

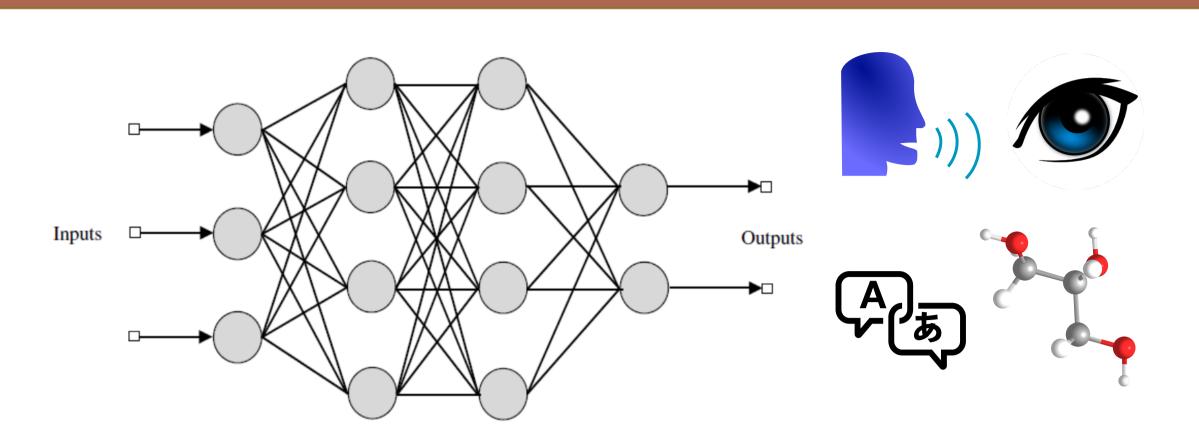
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks

ICML (Contraction)

José Miguel Hernández-Lobato¹ and Ryan P. Adams¹ ¹Harvard University

International Conference on Machine Learning

1. Motivation

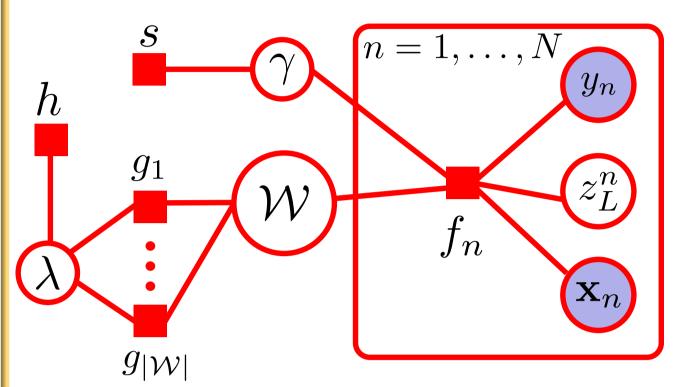


- Multilayer neural networks are state-of-the-art techniques, but...
- Require tuning of hyper-parameters.
- Are affected by overfitting problems.
- ▶ Lack estimates of **uncertainty** in their predictions.

The Bayesian approach can solve these problems but existing methods lack scalability, until now...

2. Probabilistic Multilayer Neural Networks

- ► ReLUs activations for the hidden units: $a(x) = \max(x, 0)$.
- ► The likelihood: $p(y|\mathcal{W}, X, \gamma) = \prod_{n=1}^N \mathcal{N}(y_n|z_L(x_n|\mathcal{W}), \gamma^{-1}) \equiv f_n$.
- The priors: $p(\mathcal{W}|\lambda) = \prod_{l=1}^{L} \prod_{j=1}^{V_l} \prod_{j=1}^{V_{l-1}+1} \mathcal{N}(w_{ij,l}|0,\lambda^{-1}) \equiv g_k,$ $p(\lambda) = \operatorname{Gamma}(\lambda|\alpha_0^{\lambda},\beta_0^{\lambda}) \equiv h, p(\gamma) = \operatorname{Gamma}(\gamma|\alpha_0^{\gamma},\beta_0^{\gamma}) \equiv s.$



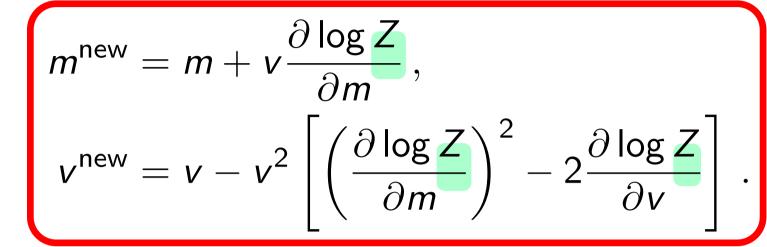
The posterior approximation is $q(\mathcal{W}, \gamma, \lambda) = \left[\prod_{l=1}^{L} \prod_{i=1}^{V_l} \prod_{j=1}^{V_{l-1}+1} \mathcal{N}(\mathbf{w}_{ij,l} | \mathbf{m}_{ij,l}, \mathbf{v}_{ij,l})\right] \operatorname{Gamma}(\gamma | \alpha^{\gamma}, \beta^{\gamma})$ $\operatorname{Gamma}(\lambda | \alpha^{\lambda}, \beta^{\lambda})$.

3. Probabilistic Backpropagation

After seeing the *n*-th data point, Bayes rule updates our beliefs q(w) as

$$p(w) = Z^{-1} \mathcal{N}(y_n | \mathbf{Z_L}(\mathbf{x_n} | w), \sigma^2) q(w),$$
 where Z is the normalization constant. Network output Modeling noise

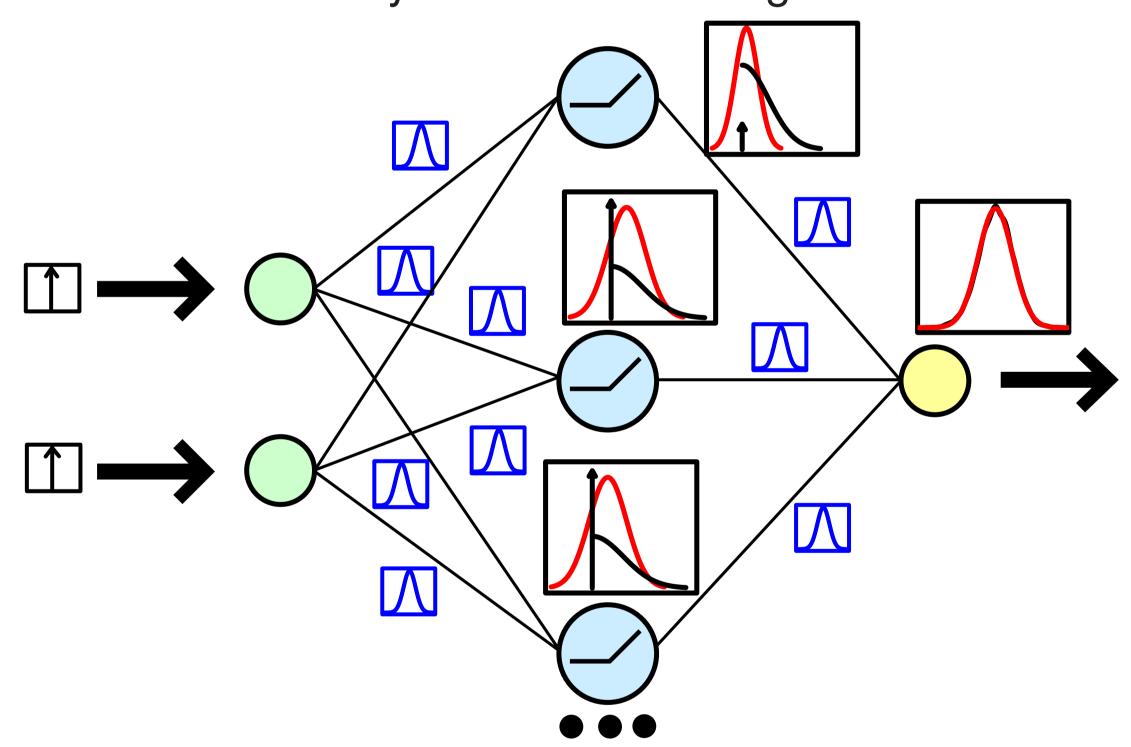
PBP uses $q(w) = \mathcal{N}(w|m,v)$ and approximates p(w) with $\mathcal{N}(w|m^{\mathsf{new}},v^{\mathsf{new}})$



We need a way to approximate Z and then obtain its gradients! Easy if $Z_{L}(\mathbf{x}_{n}|w)$ is Gaussian distributed when $w \sim q(w)$.

4. Forward Pass

Propagate distributions through the network and approximate them with Gaussians by moment matching.



Given log Z, we compute its gradients by backpropagation.

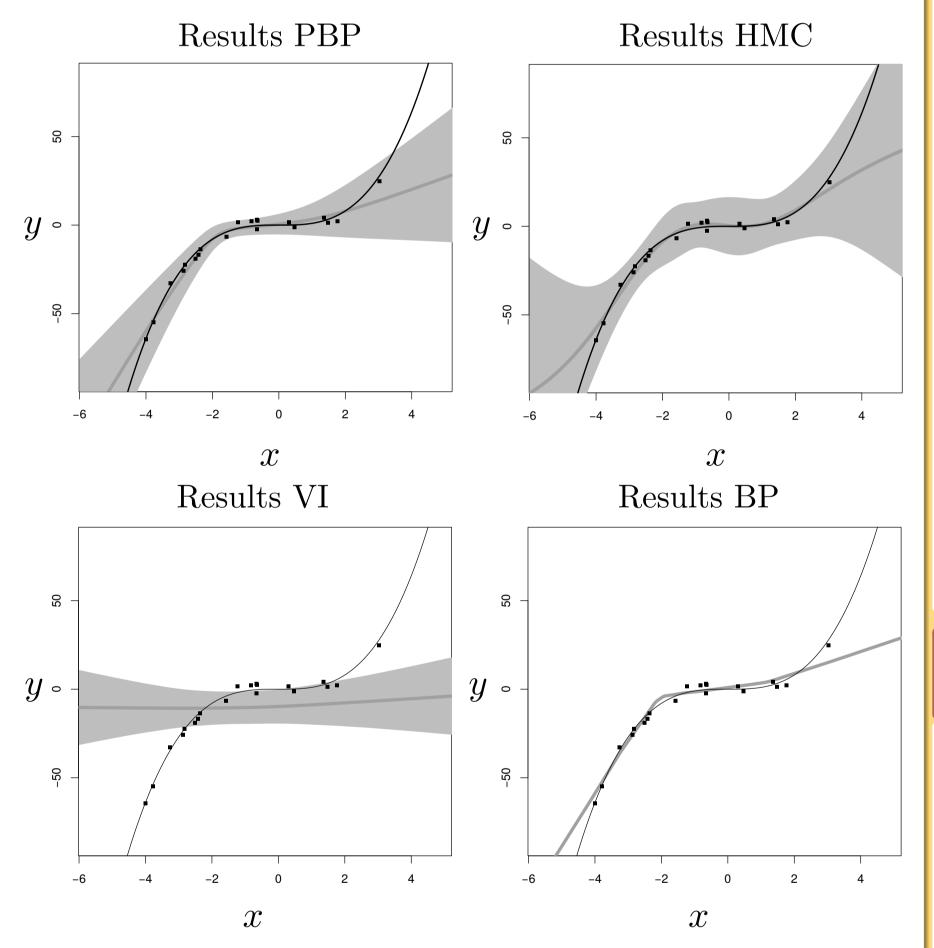
5. Results on Toy Dataset

40 training epochs.

100 hidden units.

VI uses two stochastic approximations to the ELBO.

BP and VI tuned with Bayesian optimization (www.whetlab.com).

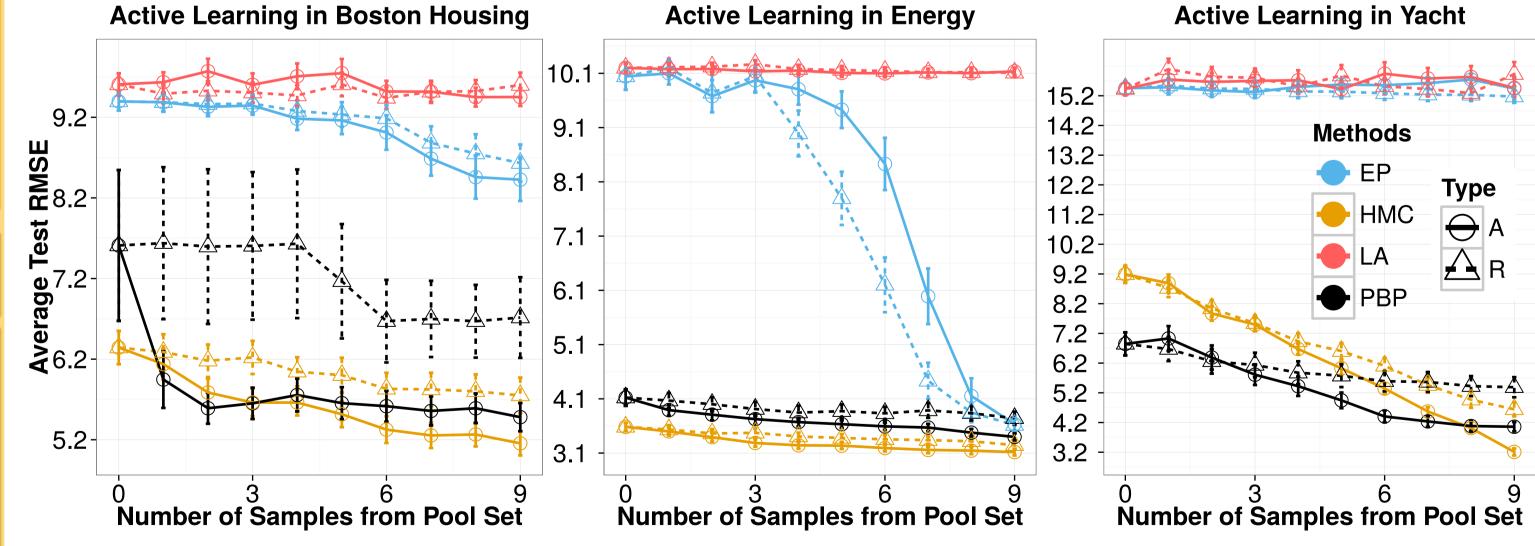


7. Results with More than One Hidden Layer

Table: Average Test RMSE.

Method		Stand	lard BP		PBP					
Dataset	1 Layer	2 Layers	3 Layers	4 Layers	1 Layer	2 Layers	3 Layers	4 Layers		
Boston	3.23 ± 0.20	3.18 ± 0.24	3.02 ± 0.18	2.87 ± 0.16	3.01 ± 0.18	2.80 ± 0.16	$2.94{\pm}0.16$	3.09 ± 0.15		
Concrete	5.98 ± 0.22	5.40 ± 0.13	5.57 ± 0.13	$5.53 {\pm} 0.14$	5.67 ± 0.09	5.24 ± 0.12	5.73 ± 0.11	$5.96 {\pm} 0.16$		
Energy	1.18 ± 0.12	0.68 ± 0.04	$0.63 {\pm} 0.03$	$0.67 {\pm} 0.03$	$1.80{\pm}0.05$	$0.90 {\pm} 0.05$	$1.24 {\pm} 0.06$	$1.18 {\pm} 0.06$		
Kin8nm	0.09 ± 0.00	0.07 ± 0.00	$0.07 {\pm} 0.00$	0.07 ± 0.00	0.10 ± 0.00	$0.07 {\pm} 0.00$	0.07 ± 0.00	0.07 ± 0.00		
Naval	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	$0.01{\pm}0.00$	0.00 ± 0.00	$0.01 {\pm} 0.00$	0.00 ± 0.00		
Power Plant	4.18 ± 0.04	4.22 ± 0.07	4.11 ± 0.04	4.18 ± 0.06	4.12 ± 0.03	4.03 ± 0.03	4.06 ± 0.04	4.08 ± 0.04		
Protein	4.54 ± 0.02	4.18 ± 0.03	4.02 ± 0.03	$3.95{\pm}0.02$	4.69 ± 0.01	$4.24{\pm}0.01$	4.10 ± 0.02	3.98 ± 0.03		
Wine	$0.65 {\pm} 0.01$	$0.65 {\pm} 0.01$	$0.65 {\pm} 0.01$	$0.65{\pm}0.02$	$0.63{\pm}0.01$	$0.64{\pm}0.01$	$0.64 {\pm} 0.01$	$0.64 {\pm} 0.01$		
Yacht	$1.18 {\pm} 0.16$	$1.54 {\pm} 0.19$	$1.11 {\pm} 0.09$	$1.27 {\pm} 0.13$	$1.01{\pm}0.05$	$0.85 {\pm} 0.05$	$0.89 {\pm} 0.10$	1.71 ± 0.23		
Year	8.93±NA	8.98±NA	8.93±NA	9.04±NA	8.87± NA	8.92±NA	8.87±NA	8.93±NA		

8. Results Active Learning



6. Results Predictive Performance and Running Time

			Avg. Test RMSE and Std. Errors			Avg. Test LL and Std. Errors		Avg. Running Time in Secs		
Dataset	N	d	VI	BP	PBP	VI	PBP	$\overline{\mathbf{VI}}$	\mathbf{BP}	PBP
Boston Housing	506	13	4.320 ± 0.2914	3.228 ± 0.1951	3.014 ± 0.1800	-2.903 ± 0.071	-2.574 ± 0.089	1035	677	13
Concrete Compression Strength	1030	8	7.128 ± 0.1230	5.977 ± 0.2207	5.667 ± 0.0933	-3.391 ± 0.017	-3.161 ± 0.019	1085	758	24
Energy Efficiency	768	8	2.646 ± 0.0813	1.098 ± 0.0738	1.804 ± 0.0481	-2.391 ± 0.029	-2.042 ± 0.019	2011	675	19
Kin8nm	8192	8	0.099 ± 0.0009	0.091 ± 0.0015	0.098 ± 0.0007	0.897 ± 0.010	0.896 ± 0.006	5604	2001	156
Naval Propulsion	11,934	16	0.005 ± 0.0005	0.001 ± 0.0001	0.006 ± 0.0000	3.734 ± 0.116	3.731 ± 0.006	8373	2351	220
Combined Cycle Power Plant	9568	4	4.327 ± 0.0352	4.182 ± 0.0402	4.124 ± 0.0345	-2.890 ± 0.010	-2.837 ± 0.009	2955	2114	178
Protein Structure	45,730	9	4.842 ± 0.0305	4.539 ± 0.0288	4.732 ± 0.0130	-2.992 ± 0.006	-2.973 ± 0.003	7691	4831	485
Wine Quality Red	1599	11	0.646 ± 0.0081	0.645 ± 0.0098	0.635 ± 0.0079	-0.980 ± 0.013	-0.968 ± 0.014	1195	917	50
Yacht Hydrodynamics	308	6	6.887 ± 0.6749	1.182 ± 0.1645	1.015 ± 0.0542	-3.439 ± 0.163	-1.634 ± 0.016	954	626	12
Year Prediction MSD	515,345	90	$9.034\pm NA$	8.932±NA	$8.879 \pm NA$	$-3.622 \pm NA$	$-3.603 \pm NA$	142,077	65,131	6119

9. Summary

- ► PBP is a state-of-the-art method for scalable inference in NNs.
- ▶ PBP is very similar to traditional backpropagation.
- ▶ PBP often outperforms backpropagation at a lower cost.
- ► Very fast C code available at https://github.com/HIPS

http://dhnzl.org/