

Probabilistic Matrix Factorization with Non-random Missing Data

José Miguel Hernández-Lobato, Neil Houlsby and Zoubin Ghahramani Engineering Department, University of Cambridge, United Kingdom.

1. Introduction

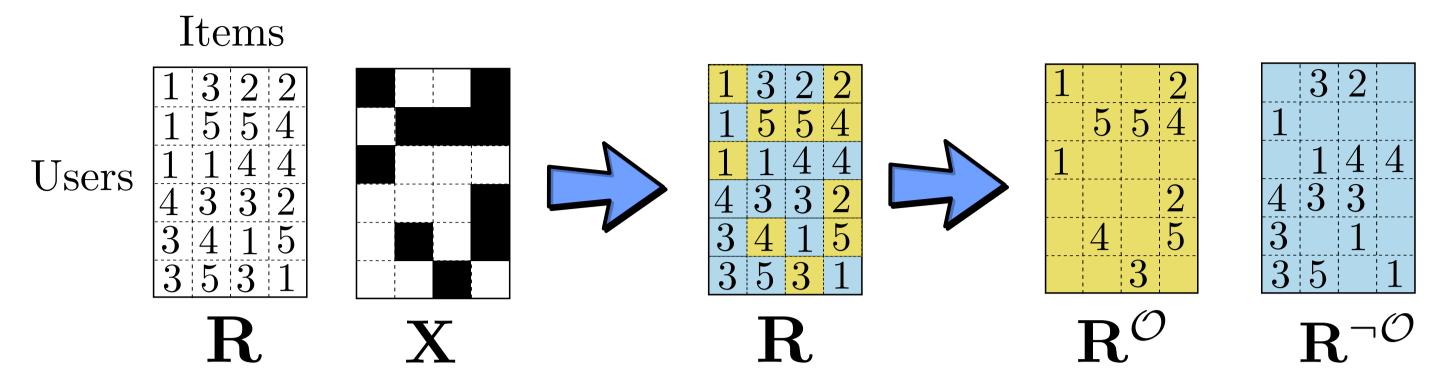
Motivation: There is empirical evidence that real-world rating data is missing not at random (MNAR): the random process that selects the observed data depends on the value of the unobserved ratings.

Problem: Probabilistic matrix factorization (MF) models have state-of-the-art predictive performance. However, they often assume missing at random (MAR) rating data and ignore dependencies.

Solution: first practical implementation of a probabilistic MF model for ordinal MNAR rating data (MF-MNAR). Dependencies captured by combining a complete data model (CDM) with a missing data model (MDM). Scalability achieved by using stochastic inference methods.

3. Probabilistic Treatment of Missing Data

We use a binary matrix **X** that splits **R** into $\mathbf{R}^{\mathcal{O}}$ and $\mathbf{R}^{\neg \mathcal{O}}$.



We use a joint probabilistic model for R and X formed by

- A complete data model (CDM) for R: $p(R|\Theta_{CDM})$.
- A missing data model (MDM) for **X** given **R**: $p(X|R,\Theta_{MDM})$.

7. Inference Algorithm and Predictive Distribution

We adjust the posterior approximation Q using

Input: Rating dataset \mathcal{D} .

Adjust \mathcal{Q} using EP and VB on CDM ignoring MDM.

Adjust Q using SVI on MDM ignoring CDM.

for t = 1 to T do

Adjust Q using SVI on MDM.

Adjust \mathcal{Q} using EP-SVI on CDM.

end for

Output: Posterior approximation Q.

Given Q, the predictive distribution for $r_{i,j}$ is a function of $x_{i,j}$:

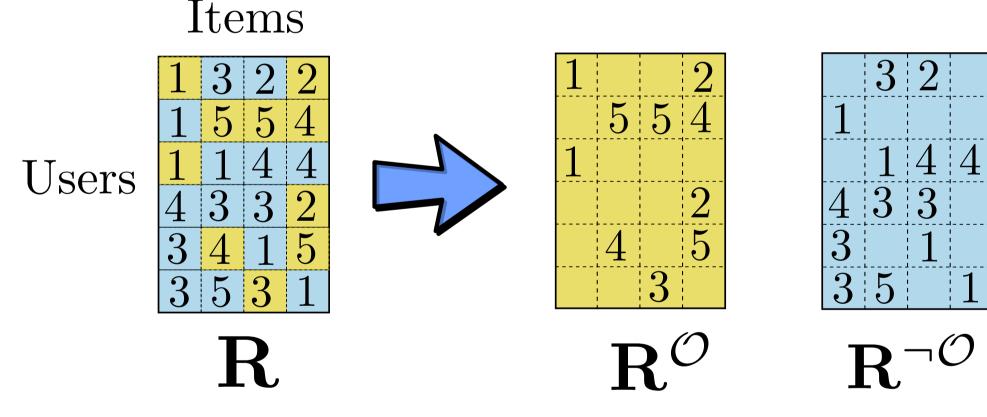
$$p(r_{i,j} = I | \mathbf{R}^{\mathcal{O}}, \mathbf{X}) pprox \tilde{p}_{i,j,l}^{\mathsf{JM}}(\mathbf{x}_{i,j}) \propto \tilde{p}_{i,j,l}^{\mathsf{CDM}} \tilde{p}_{i,j,l}^{\mathsf{MDM}}(\mathbf{x}_{i,j}),$$

2. Ordinal Rating Data and Matrices

Large amounts of ordinal rating data produced on the Internet:

Google news amazon.com

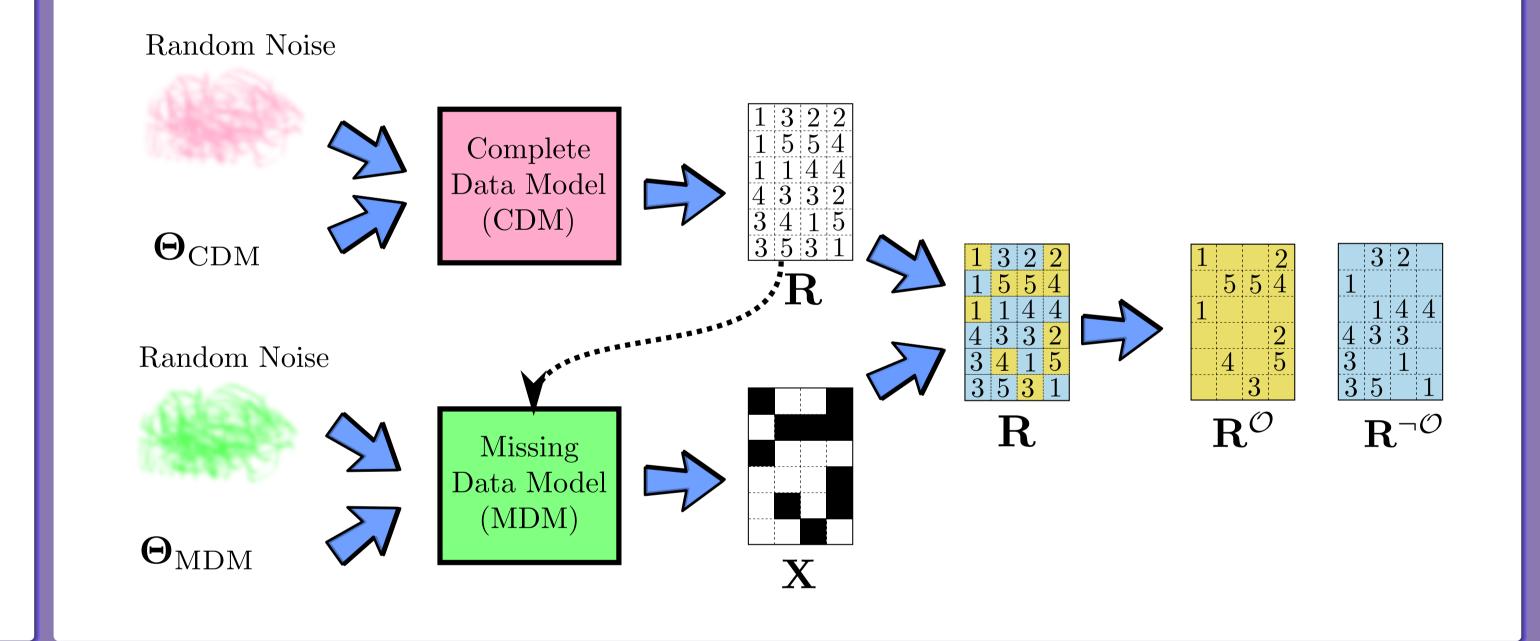
Encoded as a matrix **R** with observed (missing) entries $\mathbf{R}^{\mathcal{O}}$ ($\mathbf{R}^{\neg \mathcal{O}}$).



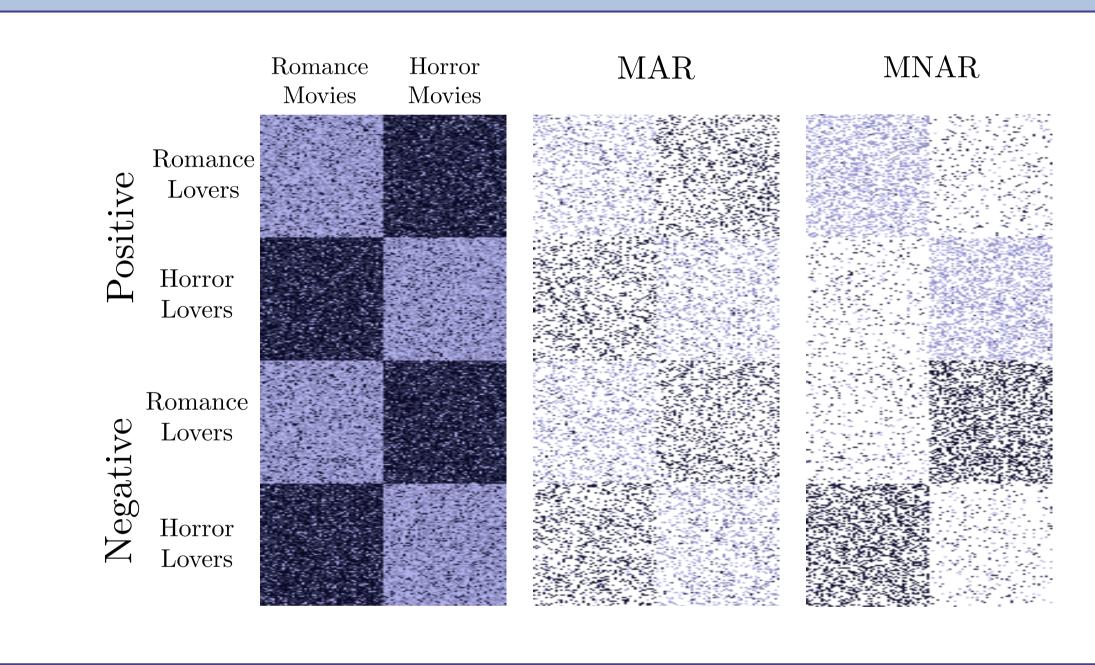
4. The Joint Model for the Data

The joint likelihood for Θ_{CDM} and Θ_{MDM} given **X** and **R** is

$$p(X, R|\Theta_{CDM}, \Theta_{MDM}) = p(X|R, \Theta_{MDM})p(R|\Theta_{CDM}).$$



8. The Synthetic SRH Dataset



3. Matrix Factorization Models and the MAR Assumption

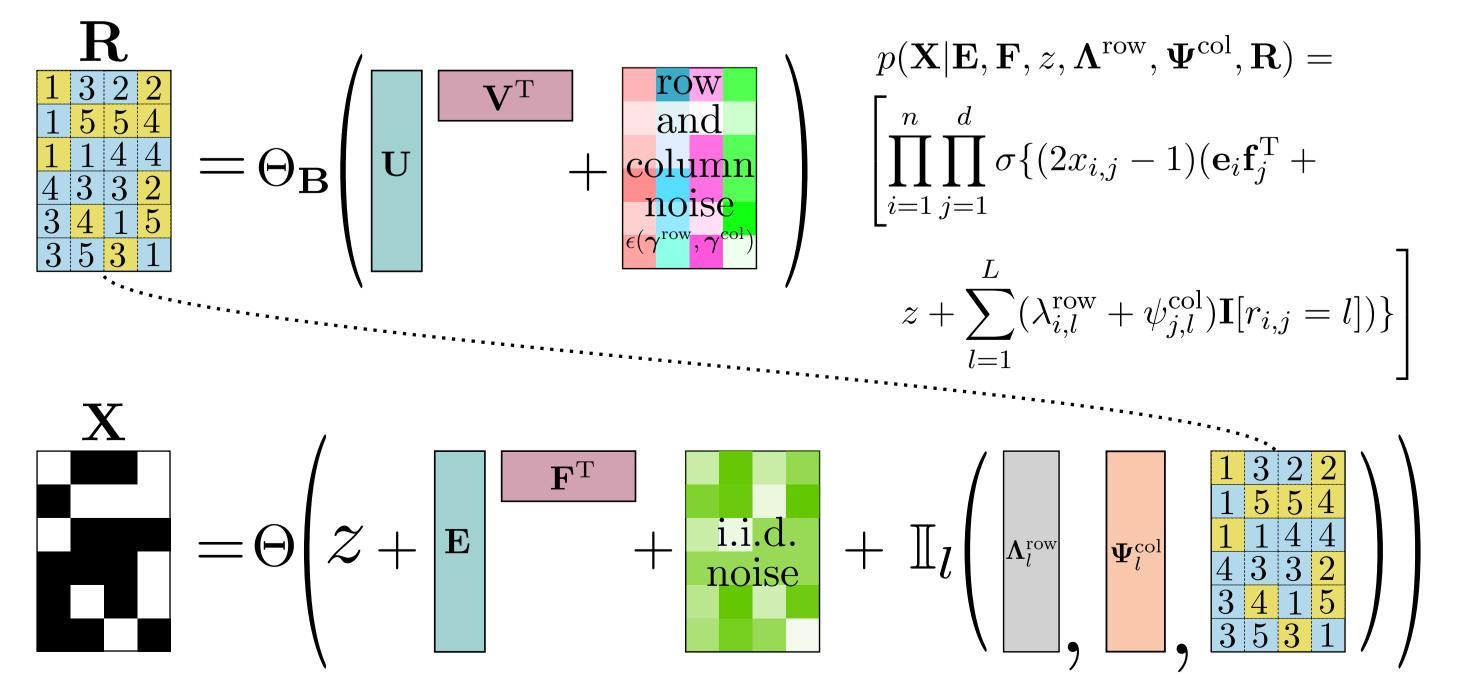
We expect **R** to be well approximated by the low rank matrix UV^T , where **U** and **V** have a small number of columns:

We can marginalize out the missing entires in the likelihood to obtain

$$p(\mathsf{R}^{\mathcal{O}}|\mathsf{U},\mathsf{V}) = \sum_{\mathsf{R}^{\neg\mathcal{O}}} p(\mathsf{R}^{\mathcal{O}},\mathsf{R}^{\neg\mathcal{O}}|\mathsf{U},\mathsf{V}) = \sum_{\mathsf{R}^{\neg\mathcal{O}}} \prod_{i=1}^n \prod_{j=1}^d p(r_{i,j}|\mathsf{u}_i\mathsf{v}_j^\top) = \prod_{(i,j)\in\mathcal{O}} p(r_{i,j}|\mathsf{u}_i\mathsf{v}_j^\top).$$

This introduces independence assumptions! MAR assumption!

6. A Diagram with our Implementation for the **Joint Model**



9. Predictive Performance on $R^{\neg O}$ and X

Results on $R^{\neg \mathcal{O}}$:

MF-MNAR: CDM & MDM.

MF-MAR:

CDM only & MAR assumption.

Results on X:

MF-MNAR:

MDM only.

MDM:

CDM & MDM.

Table: Average Log-likelihood on the Standard Test Sets.

	MF	MF	MM	CTPv	Logitvd	Paquet	Oracle
Dataset	MNAR	MAR	MAR	MNAR	MNAR	MAR	
ML100K	-1.181	-1.186	-1.471	-1.463	-1.425	-1.218	-1.468
ML1M	-1.121	-1.125	-1.308	-1.436	-1.380	-1.162	-1.456
MTweet	-0.941	-0.946	-1.105	-1.245	-1.141	-0.997	-1.235
NIPS	-0.937	-0.956	-1.204	-1.170	-1.167	-0.995	-1.329
Yahoo	-1.172	-1.204	-1.278	-1.399	-1.304	-1.218	-1.551
SMF-MNAR	-0.902	-0.937	-1.447	-1.336	-1.326	-1.000	-1.331
SMF-MAR	-0.425	-0.417	-1.327	-1.238	-1.235	-0.510	-1.198
SRH-MNAR	-1.055	-1.067	-0.987	-0.962	-0.963	-1.143	-1.392
SRH-MAR	-1.317	-1.287	-1.272	-1.265	-1.266	-1.318	-1.498

Table: Average Recall on the Standard Test Sets.

Dataset	MF MNAR	MDM	CTPv MNAR	Logitvd MNAR	Freq
ML100K	0.299	0.295	0.093	0.130	0.119
ML1M	0.204	0.204	0.041	0.068	0.077
MTweet	0.203	0.199	0.127	0.142	0.143
NIPS	0.309	0.309	0.011	0.009	0.013
Yahoo	0.285	0.283	0.145	0.198	0.182
SMF-MNAR	0.300	0.280	0.038	0.052	0.051
SMF-MAR	0.438	0.445	0.038	0.051	0.047
SRH-MNAR	0.246	0.245	0.209	0.157	0.121
SRH-MAR	0.113	0.115	0.134	0.143	0.131

http://jhml.org/ jmh233@cam.ac.uk