Modeling Transaction Data

José Miguel Hernández Lobato Zoubin Ghahramani Computational and Biological Learning Laboratory Cambridge University

20/09/2011

Overview

- Evaluation of data mining and machine learning methods in the task of modeling binary transaction data T.
- Experimental protocol based on the problem of product recommendation (cross-selling):
 - 1. We single out a set of *test* transactions.
 - A few items in these transactions are eliminated.
 - 3. Different methods are then used to *identify* the missing items using a set of *training* transactions.
 - a) Each method generates a specific *score* for each item.
 - b) The items are *sorted* according to their score.
 - c) Ideally, the missing items are *ranked* at the *top* of the resulting list.

METHODS ANALYZED

Association rules
Bayesian sets

Graph based approaches

Nearest neighbors

User based nearest neighbors

Item based nearest neighbors

Matrix factorization techniques

Partial SVD

Bayesian probabilistic matrix factorization

Variational Bayesian matrix factorization

Association Rules

- Generate a score for each item using a *dependency model* for the data given by a set of association rules \mathcal{R} .
- Efficient algorithms for finding \mathcal{R} (Apriori).
- Prediction: given a new transaction t with the items bought by a particular user, we
 - Find all the *matching rules* $A \rightarrow B$ in \mathcal{R} such that $A \subseteq t$.
 - For any item i, we compute a score by **aggregating the confidence** of the matching rules $A \rightarrow B$ such that $i \in B$.
- Performance depends on $|\mathcal{R}|$ (often the larger, the better).

Bayesian Sets

• Given a new transaction $m{t}$, the item i_k is ranked according to:

$$score(i_k) = \frac{\mathcal{P}(i_k, t)}{\mathcal{P}(i_k)\mathcal{P}(t)}$$
.

- These probabilities are obtained by
 - 1. Assuming a simple *probabilistic model* for the data.
 - 2. Using *Bayes' rule*.
- Item i_k is a binary vector with the k-th column in \mathbf{T} .

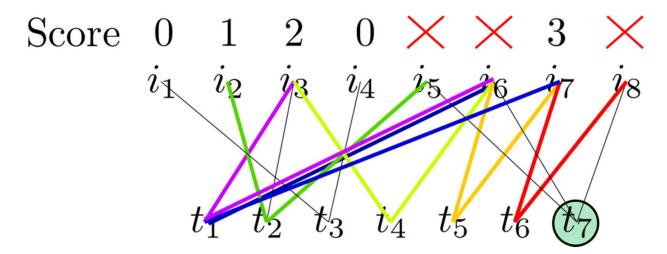
$$\mathcal{P}(i_k|\boldsymbol{\theta}) = \prod_{j=1}^n \theta_j^{i_{kj}} (1 - \theta_j)^{1 - i_{kj}},$$

$$\mathcal{P}(\boldsymbol{t}|\boldsymbol{\theta}) = \prod_{i_k \in \boldsymbol{t}} \mathcal{P}(i_k|\boldsymbol{\theta}),$$

$$\mathcal{P}(\boldsymbol{\theta}) = \prod_{i=1}^n \operatorname{Beta}(\theta_i|\alpha_i,\beta_i).$$

Graph Based Approach

- Transaction data can be encoded in the form of a graph.
- The graph has two types of nodes: transactions and items.
- Edges connect items with the transactions they are contained in.
- Prediction: given a new transaction, the score for any specific item
 is the number of different 2-step paths between the items in the
 transaction and that particular item.



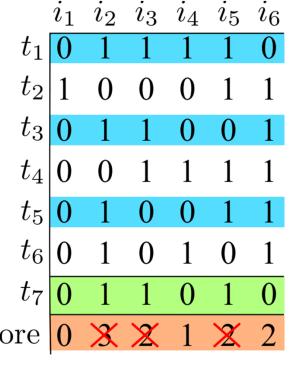
User Based Nearest Neighbors

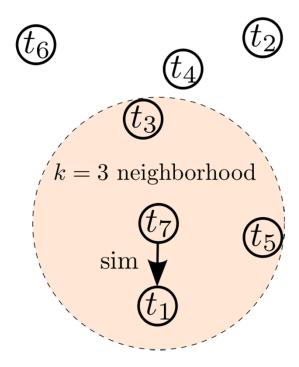
- Assumption: customers with similar tastes often generate similar baskets.
- Prediction: given a new transaction, we find a neighborhood of similar transactions and aggregate their item counts weighted by similarity.
- **Jaccard** similarity:

$$sim(\mathbf{t}_1, \mathbf{t}_2) = \frac{|\mathbf{t}_1 \cap \mathbf{t}_2|}{|\mathbf{t}_1 \cup \mathbf{t}_2|} \quad \begin{array}{c} t_1 \\ t_2 \end{array} \quad \begin{array}{c} \mathbf{0} \quad \mathbf{1} \\ 1 \quad 0 \end{array}$$

• Drawbacks:

Computing the similarities can be very *expensive*. Need to keep all the transactions in memory.





Item Based Nearest Neighbors

- Customers will often buy items similar to the ones they already bought.
- A *similarity matrix* is pre-computed for all items.
- For each item, only the k most similar items are considered.
- **Prediction**: given a new transaction, we **aggregate** the similarity measures of the k items most similar to those already included in the transaction.

	i_1	i_2	i_3	i_4	i_5	i_6
i_1	DQ	0.3	0.4	0.5	0.4	0.7
i_2	0.3).()	0.4	0.2	0.7	0.2
i_3	0.4	0.4	DO	0.3	0.5	0.4
i_1 i_2 i_3 i_4 i_5 i_6 score	0.5	0.2	0.3	X (0.3	0.2
i_5	0.4	0.7	0.5	0.3	1)(0.6
i_6	0.7	0.2	0.4	0.2	0.6	100
score	0.0	1.1	05	0.5	0.9	1.7

$$k = 3$$

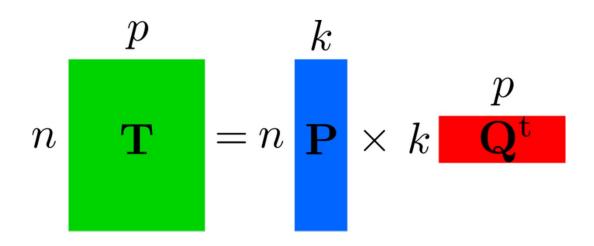
 $t = \{i_1, i_3, i_5\}$

- Computationally very efficient.
- Applicable to *large scale* problems.
- Used by Amazon.com.

Matrix Factorization Methods

• T is represented using a low rank approximation: $T \approx PQ^t \,,$

where **P** and **Q** are $n \times k$ and $p \times k$ matrices, respectively and k is small.



Partial Singular Value Decomposition

 $\mathbf{T} \approx \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{t}}$ where \mathbf{U} and \mathbf{V} are $n \times k$ orthonormal matrices and \mathbf{D} is a $k \times k$ diagonal matrix with the first k singular values.

We define $\mathbf{P} = \mathbf{U}\mathbf{D}$ and $\mathbf{Q} = \mathbf{V}$. Since \mathbf{U} and \mathbf{V} are orthonormal, $\mathbf{P} = \mathbf{U}\mathbf{D} = \mathbf{T}\mathbf{V}$.

Given a new transaction t the score given to the i-th item is:

$$s_i = t \mathbf{V} \mathbf{v}_i$$
 ,

where v_i is the i-th row in V.

There is available *highly efficient* software for computing partial SVD decompositions on *sparse matrices* (e.g., package irlba in R).

Bayesian Probabilistic Matrix Factorization

Multivariate Gaussian priors are fixed for each row of \mathbf{P} and \mathbf{Q} :

$$\mathcal{P}(\mathbf{P}) = \prod_{i=1}^n \mathcal{N}(\mathbf{p}_i | \mu_{\mathbf{P}}, \Lambda_{\mathbf{P}}^{-1}), \quad \mathcal{P}(\mathbf{Q}) = \prod_{i=1}^p \mathcal{N}(\mathbf{q}_i | \mu_{\mathbf{Q}}, \Lambda_{\mathbf{Q}}^{-1}).$$

Gaussian-Wishart priors for the hyperparameters:

$$\mathcal{P}(\mu_{\mathbf{P}}, \Lambda_{\mathbf{P}}) = \mathcal{N}(\mu_{\mathbf{P}} | \mu_{0}, (\beta_{0} \Lambda_{\mathbf{P}})^{-1}) \mathcal{W}(\Lambda_{\mathbf{P}} | \mathbf{W}_{0}, v_{0}),$$

$$\mathcal{P}(\mu_{\mathbf{Q}}, \Lambda_{\mathbf{Q}}) = \mathcal{N}(\mu_{\mathbf{Q}} | \mu_{0}, (\beta_{0} \Lambda_{\mathbf{Q}})^{-1}) \mathcal{W}(\Lambda_{\mathbf{Q}} | \mathbf{W}_{0}, v_{0}),$$

Gaussian likelihood. Bayesian inference using Gibbs sampling.

Given a new transaction, the score of each items is given by the average prediction of m Bayesian linear regression problems, one problem per sample of \mathbf{Q} .

Variational Bayesian Matrix Factorization

Gaussian priors for **P** and **Q**:

$$\mathcal{P}(\mathbf{P}) = \prod_{i=1}^{n} \prod_{j=1}^{k} \mathcal{N}(p_{ij}|0,1), \ \mathcal{P}(\mathbf{Q}) = \prod_{i=1}^{p} \prod_{j=1}^{k} \mathcal{N}(q_{ij}|0,v_j).$$

The posterior distribution $\mathcal{P}(\mathbf{P}, \mathbf{Q}|\mathbf{T})$ is approximated by:

$$Q(\mathbf{P}, \mathbf{Q}) = \left[\prod_{i=1}^{n} \prod_{j=1}^{k} \mathcal{N}(p_{ij}|\bar{p}_{ij}, \tilde{p}_{ij})\right] \left[\prod_{i=1}^{p} \prod_{j=1}^{k} \mathcal{N}(q_{ij}|\bar{q}_{ij}, \tilde{q}_{ij})\right].$$

The *parameters* of Q, the *prior hyperparameters* and the level of *noise* in the Gaussian likelihood are selected by minimizing:

$$\text{KL}[Q(\mathbf{P}, \mathbf{Q})||\mathcal{P}(\mathbf{P}, \mathbf{Q}|\mathbf{T})] = \int Q(\mathbf{P}, \mathbf{Q}) \log \frac{Q(\mathbf{P}, \mathbf{Q})}{\mathcal{P}(\mathbf{P}, \mathbf{Q}|\mathbf{T})},$$

Given a *new transaction*, the prior for \mathbf{Q} is fixed to $\mathcal{Q}(\mathbf{Q})$ and we approximate the posterior for the new row of \mathbf{P} and \mathbf{Q} as in the training phase.

Unlike, BPMF, VBMF does not take into account *correlations* in the posterior.

DATASETS ANALYZED AND PERFORMANCE EVALUATION

Public Datasets Considered

Four datasets from the FIMI repository (http://fimi.ua.ac.be/):

- Retail: market basket data from a Belgian retail store (88,162 \times 16,470).
- BMS-POS: point-of-sale data from electronics retailer (515,597 \times 1657).
- BMS-WebView-2: click data from an e-commerce site $(77,512 \times 3340)$.
- Kosarak: click data from an on-line news portal (990,002 \times 41270).

Data pre-processing:

- Only considered the 1000 most frequent items.
- Only considered transactions with at least 10 items.
- Training, validation and test sets: 2000 transactions each.
- For each test transaction, a 15% of the items are eliminated as test items.

Objective: identify the items eliminated in the test transactions.

Performance Evaluation

- *Top-N* recommendation approach.
 - 1. For each test transaction, we form a *ranked list* of items.
 - 2. The items already in the transaction obtain the *lowest rank*.
 - 3. We single out the *top N* elements in this list (N = 5, N = 10).
 - 4. We have a *hit* each time one missing item is singled out.
 - **5. Recall** is used as a measure of performance:

$$Recall(N) = \frac{\#hits}{\#missing\ items}.$$

 We also include in the analysis a method that recommends the most popular products (top-pop).

RESULTS OF THE EXPERIMENTS

Retail Dataset

Method	RECALL-5	RECALL-10	Time
Arules 6172	0.2145 ± 0.0060	0.2487 ± 0.0064	0.0433 ± 0.0001
BSets	$0.1669 {\pm} 0.0054$	$0.1962 {\pm} 0.0059$	0.0685 ± 0.0003
GraphPath	$0.1890 {\pm} 0.0056$	$0.2183 {\pm} 0.0060$	0.0925 ± 0.0005
UBNN 160	0.1512 ± 0.0052	$0.1962 {\pm} 0.0058$	0.6650 ± 0.0048
IBNN 10	0.1675 ± 0.0054	$0.1991 {\pm} 0.0058$	0.0356 ± 0.0001
PSVD 1	$0.1895 {\pm} 0.0057$	0.2170 ± 0.0060	0.0006 ± 0.0000
BPMF	$0.1895 {\pm} 0.0057$	$0.2166 {\pm} 0.0060$	0.0508 ± 0.0001
VBMF	$0.1895 {\pm} 0.0057$	0.2170 ± 0.0060	$0.0344 {\pm} 0.0001$
Top-pop	$0.1894 {\pm} 0.0057$	0.2137 ± 0.0060	0.0000 ± 0.0000

Time: average prediction time per test transaction (in seconds).

BMS-POS Dataset

Method	RECALL-5	RECALL-10	Time
Arules 502125	0.2602 ± 0.0059	0.3455 ± 0.0064	0.7443 ± 0.0016
BSets	$0.2393 {\pm} 0.0058$	$0.3215{\pm}0.0064$	0.1139 ± 0.0003
GraphPath	$0.2383 {\pm} 0.0057$	0.3109 ± 0.0064	0.0832 ± 0.0002
UBNN 160	$0.1521 {\pm} 0.0050$	0.2319 ± 0.0058	0.3692 ± 0.0009
IBNN 10	0.2012 ± 0.0053	$0.2956{\pm}0.0062$	0.0313 ± 0.0001
PSVD 3	$0.2492 {\pm} 0.0059$	$0.3339 {\pm} 0.0065$	0.0006 ± 0.0000
BPMF	$0.2521 {\pm} 0.0059$	$0.3351 {\pm} 0.0065$	0.0643 ± 0.0001
VBMF	$0.2490{\pm}0.0059$	$0.3350{\pm}0.0065$	0.0910 ± 0.0001
Top-pop	$0.2273 {\pm} 0.0055$	$0.3084 {\pm} 0.0063$	0.0000 ± 0.0000

BMS-WebView2 Dataset

Method	RECALL-5	RECALL-10	Time
Arules 1830044	0.3092 ± 0.0075	0.4021 ± 0.0082	2.0352 ± 0.0047
BSets	$0.2954 {\pm} 0.0073$	$0.4190 {\pm} 0.0080$	$0.0585 {\pm} 0.0001$
$\operatorname{GraphPath}$	$0.0987 {\pm} 0.0051$	$0.1332 {\pm} 0.0061$	0.1395 ± 0.0014
UBNN 160	$0.0429 {\pm} 0.0031$	0.0779 ± 0.0041	0.6796 ± 0.0050
IBNN 10	0.0622 ± 0.0038	$0.0946 {\pm} 0.0047$	0.0353 ± 0.0001
PSVD 50	0.3019 ± 0.0073	0.4118 ± 0.0079	0.0028 ± 0.0000
BPMF	0.3115 ± 0.0074	0.4212 ± 0.0079	0.7644 ± 0.0010
VBMF	$0.3062 {\pm} 0.0074$	$0.4180 {\pm} 0.0080$	1.9095 ± 0.0037
Top-pop	$0.0745 {\pm} 0.0042$	0.1130 ± 0.0054	0.0000 ± 0.0000

Kosarak Dataset

Method	RECALL-5	RECALL-10	Time
Arules 183456	0.3125 ± 0.0062	$0.3646 {\pm} 0.0065$	0.1494 ± 0.0005
BSets	$0.2495{\pm}0.0058$	$0.3035 {\pm} 0.0062$	0.1575 ± 0.0004
GraphPath	$0.2459 {\pm} 0.0057$	$0.2900{\pm}0.0061$	0.1186 ± 0.0003
UBNN 160	0.1417 ± 0.0048	$0.1948 {\pm} 0.0055$	$0.6766 {\pm} 0.0015$
IBNN 10	$0.1648 {\pm} 0.0051$	$0.2280{\pm}0.0058$	0.0316 ± 0.0001
PSVD 5	$0.2741 {\pm} 0.0060$	$0.3299 {\pm} 0.0065$	0.0008 ± 0.0000
BPMF	0.2773 ± 0.0060	$0.3311{\pm}0.0065$	0.0792 ± 0.0002
VBMF	$0.2756 {\pm} 0.0060$	$0.3310{\pm}0.0065$	0.1514 ± 0.0002
Top-pop	0.2172 ± 0.0054	0.2736 ± 0.0060	0.0000 ± 0.0000

References I

- R. Agrawal, T. Imielinski, and A. Swami (1993)
 Mining association rules between sets of items in large databases.
 ACM SIGMOD International Conference on Management of Data, 207-216.
- Ghahramani, Z. and Heller, K. A. (2005) Bayesian Sets Advances in Neural Information Processing Systems.
- Craswell, N. and Szummer, M. Random walks on the click graph. Proceedings of SIGIR 20007, 239-246.
- C. Desrosiers and G. Karypis (2011)
 A comprehensive survey of neighborhood-based recommendation methods.
 Recommender Systems Handbook, Springer, 107-144.
- Baglama, J. and Reichel, L. (2005)
 Augmented Implicitly Restarted Lanczos Bidiagonalization Methods
 SIAM J. Sci. Comput., Society for Industrial and Applied Mathematics, 27, 19-42
- Salakhutdinov, R. and Mnih, A. (2008)
 Bayesian probabilistic matrix factorization using MCMC
 International Conference in Machine Learning, 872-879
- Raiko, T. ,Ilin, A. and Juha, K. (2007)
 Principal Component Analysis for Large Scale Problems with Lots of Missing Values
 Machine Learning: ECML 2007, Springer Berlin / Heidelberg, 4701, 691-698

References II

- Hahsler M, Buchta C, Gun B, Hornik K (2010).
 arules: Mining Association Rules and Frequent Itemsets.
 R package version 1.0-3. http://CRAN.R-project.org/package=arules
- Hahsler M (2010).
 recommenderlab
 R package version 0.1-2. http://CRAN.R-project.org/package=recommenderlab
- Brijs, T., Swinnen, G., Vanhoof, K. and Wets, G. (1999)
 Using association rules for product assortment decisions: a case study
 Proceedings of SIGKDD 1999, 254-260.
- Thanks to Blue Martini Software for contributing the KDD Cup 2000 data.
 Kohavi, R., Brodley, C. E., Frasca, B., Mason, L. and Zheng, Z. (2000)
 KDD-Cup 2000 organizers' report: peeling the onion
 SIGKDD Explor. Newsl., ACM, 2, 86-93.
- Zheng, Z.; Kohavi, R. and Mason, L. (2001)
 Real world performance of association rule algorithms
 Proceedings of SIGKDD, 401-406.

Thank you for your attention!